Abstract

Developing high-performance elastomers with distinctive features opens up new vistas and exciting possibilities for information encryption but remains a daunting challenge. To surmount this difficulty, an unprecedented synthetic approach, "modular molecular engineering", was proposed to develop tailor-made advanced elastomers. The customized hydrophobic poly(urea-urethane) (HPUU-R) elastomer perfectly integrated ultrahigh tensile strength (∼75.3 MPa), extraordinary toughness (∼292.5 MJ m-3), satisfactory room-temperature healing, high transparency, puncture-, scratch-, and water-resistance; and miraculously, its 0.20 g film could lift objects over 100 000 times its weight without rupture. Intriguingly, we unexpectedly discovered that the elastomers fluoresce brightly at the optimal excitation wavelength attributed to the "clusterization-triggered emission". Based on the gradient hydrophobicity and fluorescent properties of HPUU-R, a hierarchical information encryption/decryption mode was innovatively established. Using high-performance HPUU-R as a double encryption platform makes the information highly stable and persistent, thus providing a stronger guarantee for the encrypted information. More attractively, given the impressive recyclability and self-healing of HPUU-R, information encryption can be realized by using recycled elastomers, injecting new vitality into green and sustainable development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.