Abstract

Although mechanically robust polymer materials had not been thought to self-heal, we recently found that poly(ether thiourea) PTUEG3, which is a glassy polymer with high mechanical strength, self-heals even at ambient temperatures. This finding updated the above preconception. Nevertheless, it should also be noted that PTUEG3, under high humidity, absorbs water and is plasticized to lose its mechanical strength. Humidity-induced plasticization is a general problem for polymers with polar groups. Herein, we report that PTUEG3, if designed by copolymerization to contain only 10 mol % of a dicyclohexylmethane (Cy2M) thiourea unit (TUCy2M), serves as a humidity-tolerant, mechanically robust polymer material that can self-heal at ambient temperatures. This copolymer contained, in its ether thiourea (TUEG3)-rich domain, a humidity-tolerant, noncovalently cross-linked 3D network with mechanical robustness formed by stacking of the Cy2M group. The present work provides a promising design strategy for mechanically robust, self-healable polymers usable under high humidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.