Abstract

The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work, we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex ®, PP or Ecoflex ®/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young's modulus than Ecoflex ®, and the latter had little influence on the properties of PP in Ecoflex ®/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.