Abstract

Poly(ε-caprolactone) (PCL) fibers ranging from 250 to 700nm in diameter were produced by electrospinning a polymer tetrahydrofuran/N,N-dimethylformamide solution. The mechanical properties of the fibrous scaffolds and individual fibers were measured by different methods. The Young’s moduli of the scaffolds were determined using macro-tensile testing equipment, whereas single fibers were mechanically tested using a nanoscale three-point bending method, based on atomic force microscopy and force spectroscopy analyses. The modulus obtained by tensile-testing eight different fiber scaffolds was 3.8±0.8MPa. Assuming that PCL fibers can be described by the bending model of isotropic materials, a Young’s modulus of 3.7±0.7GPa was determined for single fibers. The difference of three orders of magnitude observed in the moduli of fiber scaffolds vs. single fibers can be explained by the lacunar and random structure of the scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.