Abstract

Micro-Raman spectroscopy was used to determine the structural modifications occurring in a simple ion-exchanged glass. The base lithium silicate composition 30Li2O–70SiO2 was studied as it underwent ion exchange, Li+ ↔ K+, at six temperatures spanning the glass transition point. Using a well-developed relationship between the Si–O–Si bond angle, the Si–O bond length, and Raman shifts, the reduction in network molar volume and increase in compressive stress were estimated. On the basis of the effect of the ion-exchange temperature, the existence of a threshold energy below which the compressive stress manifests as the reorientation of silica tetrahedra only and above which the system relaxes by increasing the Si–O bond length is proposed. Finally, the linear network dilation coefficient is revisited in terms of these new data and an explanation given for its underestimation and overestimation of stress at low and high temperatures, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.