Abstract

Polypyrrole/SnO2 nanocomposites were created using in-situ polymerization techniques. The nanocomposites were described using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their thermal properties were studied using a Differential Scanning Calorimeter (DSC). The DC conductivity of the samples was measured as a function of temperature from 30 ℃ to 1900 ℃, and it was observed that increasing the concentration of tin oxide particles improves conductivity due to polaron hopping and composite chain length extension. The tensile strength of PPy nanocomposites doped in PVA thin film up to 6 wt% indicates 64.2 MPa, which may be related to the homogenous distribution of PPy nanocomposite in PVA. The study reveals that because 50 wt% of the nanocomposites have the highest conductivity and sensitivity, these nanocomposites may be useful in future applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.