Abstract

TiB and TiC reinforced titanium matrix composites were produced by common casting technique utilizing the self-propagation hightemperature synthesis between titanium and B4C. The mechanical properties and fracture mechanism of in situ synthesized titanium matrix composites have been investigated by means of uniaxial tension at elevated temperatures. As temperature increases, the ultimate tensile strength decreases and ductility increases. Compared with the matrix alloy, ultimate tensile strength of the composite was improved obviously because the in situ synthesized reinforcements are very stable at elevated temperatures and can strengthen the matrix alloy effectively. The fracture behavior was dependent on temperature. The composites fail at low strain at room temperature due to the fracture of the reinforcements. As temperature increases, voids are likely to initiate and grow at the interface between the reinforcement and the matrix alloy, and their coalescence eventually leads to the fracture of the composites. The debonding between the reinforcements and the matrix alloy becomes the main reason for the composites failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.