Abstract

The present paper describes the mechanical properties of a friction welded joint between Ti–6Al–4V alloy and Al–Mg alloy (AA5052). The Ti–6Al–4V/AA5052–H112 joint, made at a friction speed of 27.5 rev s−1, friction pressure of 30 MPa, friction time of 3.0 s, and forge pressure of 60 MPa, had 100% joint efficiency and fractured in the AA5052–H112 base metal. The Ti–6Al–4V/AA5052–H34 joint, made under the same friction welding conditions, did not achieve 100% joint efficiency and it fractured in the AA5052–H34 base metal because the AA5052–H34 base metal had softened under friction heating. The joints made at low friction speed or using short friction time showed fracture at the welded interface because a sufficient quantity of heat for welding could not be produced. However, the joints made at high friction speed or using long friction time were also fractured at the welded interface: in this instance, the welded interface also had an intermetallic compound layer consisting of Ti2Mg3Al18. The Ti–6Al–4V/AA5052–H34 joint made at a friction speed of 27.5 rev s−1 with friction pressure of 150 MPa, friction time of 0.5 s, and forge pressure of 275 MPa had 100% joint efficiency and fractured in the AA5052–H34 base metal, although the AA5052–H34 side softened slightly. In conclusion, the Ti–6Al–4V/AA5052–H112 joint and Ti–6Al–4V/AA5052–H34 joint had 100% joint efficiency and fractured in the AA5052 base metal when made under the friction welding conditions described above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.