Abstract

Mechanical properties of cellulose-based electro-active paper (EAPap) are characterized in this work. Cellulose-based EAPap has been studied as a potential actuator concept, as a result of its low actuation voltage, lightweight, low power consumption, biodegradability and low cost. EAPap is made from cellulose paper, coated with thin electrically conducting electrodes. This EAPap shows a reversible and reproducible bending movement as well as a longitudinal displacement under electric field excitation. However, the EAPap is a complex anisotropic material, which has not been extensively characterized. It is important to have extended property data for EAPap so that the actuator performance can be optimized, and this requires additional material testing. Our material test results show that EAPap has two distinct elastic constants. The initial Young's modulus of EAPap is in the range of 4–9 GPa, which is higher than other polymer materials. This modulus is also orientation dependent, which may be associated with the piezoelectricity of the EAPap materials. Another important property is that the dynamically induced mechanical strains of these materials exhibit linear creep behaviour as confirmed by constant stress and low frequency cyclic loading tests. From scanning electron microscope investigations, cellulose EAPap exhibits a layered, anisotropic cellulose macromolecular structure that exhibits both elastic and plastic deformations, as well as substantial temperature and humidity dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.