Abstract

Transition metal carbides and nitrides (MXenes) are considered the new generation of flexible electronic materials because of their superior mechanical strength and flexibility. Based on the density functional theory, the structures, electronic properties and mechanical properties of the 2D Zr-based MXenes with and without surface functional groups (O, F and OH) are investigated systematically to explore their elastic properties and tensile fracture mechanism. The results reveal the tensile strength and critical strain under biaxial tensile direction can reach 52 GPa, 12% for Zr2C and 55 GPa, 19% for Zr3C2, more outstanding than the mechanical behavior of the pristine Ti2C (47 GPa, 9.5%). The tensile behaviors of the functionalized Zr n +1CnT2 (n = 1, 2, T = O, F, OH) strongly depend on the crystallographic orientation and the surface functional group. The phonon spectrum under the critical strain indicates the tensile fracture of the pristine Zr-based MXenes was determined by phonon instability, except along the armchair direction of Zr2C and zigzag direction of Zr3C2. During tensile strain, the collapse of Zr n +1C n F2 and Zr n +1C n (OH)2 (n = 1, 2) are mainly caused by internal Zr–C bond rupture and transfer to the surface. While the O-functionalized Zr n +1C n O2 (n = 1, 2) presented the opposite collapse trend. Additionally, according to the research results of critical strain, elastic modulus and electrical conductivity, F/OH-terminated Zr2C MXene is relatively more suitable for flexible sensors of wearable devices than Zr3C2T2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call