Abstract

Functionally graded tungsten carbide–cobalt (FG WC–Co) composites were fabricated using a carburization process that preferentially segregated cobalt away from the free surface, establishing a compositional gradient into the bulk of the material. The resulting surface, which is harder due to increased WC content, has potentially broad application in tools for rock drilling and metal machining. The microstructure and mechanical properties of FG WC-10wt.% Co and FG WC-16wt.% Co samples were compared to conventional WC–Co for hardness, wear, fracture toughness, transverse rupture strength (TRS), impact, compression strength, and compressive fatigue. The increased surface hardness of the functionally graded materials resulted in substantially improved wear resistance, from 40% to 80%, compared to their conventional homogeneous WC–Co counterparts at equivalent levels of hardness, strength, and fracture toughness. FG WC–Co also exhibited improved impact and compressive fatigue resistance in a cutting element with a dome-topped geometric shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.