Abstract

The diarylethene derivative, 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene, undergoes a reversible photoisomerization between its ring-open and ring-closed forms in the solid-state and has applications as a photomechanical material. Mechanical properties of macrocrystals, nanowire single crystals, and amorphous films as a function of multiple sequential UV and visible light exposures have been quantified using atomic force microscopy nanoindentation. The isomerization reaction has no effect on the elastic modulus of each solid. But going from the macro- to the nanowire crystal results in a remarkable over 3-fold decrease in the elastic modulus. The macrocrystal and amorphous solids are highly resistant to photomechanical fatigue, while nanowire crystals show clear evidence of photomechanical fatigue attributed to a transition from crystal to amorphous forms. This study provides first experimental evidence of size-dependent photomechanical fatigue in photoreactive molecular crystalline solids and suggests crystal morphology and size must be considered for future photomechanical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.