Abstract

1. The maximum velocity of shortening, Vmax, and stiffness were measured in skinned single fibre segments from psoas and soleus muscles of adult rabbits and psoas muscles of new-born rabbits, and the myosin light chain composition was also determined in the same segments used in the mechanical studies. 2. Vmax was obtained at 15 degrees C during maximal activation at pCa 5.49 using a method involving measurement of the time required to take up various amounts of slack imposed on the segments. Stiffness was measured during activation at 10 degrees C by application of length steps complete in 0.6 msec. The myosin light chain composition of the segments was then determined by SDS-polyacrylamide gel electrophoresis. 3. Only fast type light chains were found to be present in the psoas fibre segments, though the relative amounts of myosin LC1f, LC2f and LC3f in these segments was somewhat variable. In most instances, the sum of the amounts of LC1f and LC3f present was equivalent to the amount of LC2f. Only slow type light chains were found in the soleus segments and the sum of the amounts of LC1as and LC1bs was about equal to the amount of LC2s. 4. The results indicate that there are no consistent relationships between Vmax, tension development or stiffness and LC1f/LC2f in the segments from adult and new-born psoas muscles, or between these mechanical parameters and LC1as/LC2s or LC1bs/LC2s in the adult soleus segments. However, the psoas segments, which had light chains of the fast type, had Vmax values that were consistently higher than those of the soleus segments, which had light chains of the slow type. 5. The stiffness values obtained in each of the three kinds of muscle were similar, suggesting that cross-bridge stiffness is similar in rabbit skeletal muscles of different type and age. Moreover, the results indicate that the amount of end compliance introduced by the connections to the fibre segments has a marked influence on the stiffness that is measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.