Abstract

Carbon/carbon (C/C) composites with PyC/TaC/PyC or PyC/SiC/TaC/PyC multi-interlayers were prepared by isothermal chemical vapor infiltration, followed by Furan resin impregnation and carbonization. Microstructures, mechanical properties including flexural strength, ductile displacement, and fracture behaviors of composites were studied. Furthermore, composites were heat treated at 2000 °C to study the effects of heat treatment on mechanical properties and fracture behaviors. PyC/TaC/PyC and PyC/SiC/TaC/PyC multi-interlayers have been deposited uniformly in C/C composites. With the introduction of PyC/TaC/PyC multi-interlayers in C/C composites, the flexural strength decreases; however, the ductile displacement increases. The fracture behavior changes from brittleness (0% TaC) to pseudo-ductility (5% TaC) and high toughness (10% TaC). When PyC/SiC/TaC/PyC multi-interlayers are introduced in C/C composites, the flexural strength is improved remarkably from 270 MPa to 522 MPa, but the ductile displacement decreases obviously from 0.49 mm to 0.24 mm, and the fracture behavior becomes brittle again. After heat treatment at 2000 °C, the flexural strength decreases, but the ductile displacement increases and pseudo-ductility or high toughness can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.