Abstract
The mechanical properties of the double gyroid (DG) cubic phase in glassy−rubbery block copolymer systems are examined. The stress−strain properties of an isoprene-rich polystyrene/polyisoprene/polystyrene (SIS) triblock and a polystyrene/polyisoprene (SI) starblock DG, both comprised of two separate interpenetrating glassy networks embedded in rubbery matrices, are compared to those of the sphere, cylinder, and lamellar morphologies. This 3-dimensionally interpenetrating periodic nanocomposite is found to have superior properties over those of its classical counterparts, attributable to the morphology rather than to the volume fraction of the glassy component, the architecture of the molecule, or the molecular weight. The DG is the only polygranular/isotropic thermoplastic elastomer morphology which exhibits necking and drawing and which requires considerably higher stresses for deformation up to 200% strain than any of the three classical microdomain morphologies. The deformation behavior of the DG is f...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.