Abstract

Mechanical mechanisms of the directional movement and inverse of an eccentric compound droplet in a modest extensional flow are investigated in this paper by spectral boundary element methods. In this work, a phenomenon is revealed that the shift of a compound droplet is driven by the asymmetric interfacial curvature, not just the outer drag. The asymmetric layout of the daughter droplet leads to the asymmetric drags from the continuous phase and the asymmetric deformation of the compound droplet with different interface curvatures. As the inner droplet has both enhancing and suppressing effects on the globule deformation (during different stages), the interface curvatures will vary when the relative size and location of the inner droplet are changed. The curvature difference results in the asymmetric pressure distribution and circulation inside the compound droplet. Eventually, the interaction of the inner driving force (curvature difference) and the outer drags results in the directional shift and inverse of the compound droplet. The shift direction is affected by the structural asymmetry parameter ε (eccentricity) and some flow features such as the capillary number. The conclusion could enlighten potential applications for the movement of soft globules driven by the curvature difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.