Abstract

Pressure-induced amorphization in \ensuremath{\alpha}-quartz has been investigated using constant-pressure molecular-dynamics calculations with the two-body potential of van Beest, Kramer, and van Santen. Both the static properties and the crystalline-to-amorphous phase transition were very well reproduced. Through an analysis of the elastic moduli, the mechanism for the transformation is shown to be a mechanical instability driven mainly by a cooperative twisting and compression of the helical tetrahedral silicate units with an abrupt decrease in the ${\mathit{C}}_{12}$, ${\mathit{C}}_{23}$, ${\mathit{C}}_{13}$, ${\mathit{C}}_{14}$, and ${\mathit{C}}_{33}$ elastic moduli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.