Abstract

The present work deals with experimental and theoretical analyses of mechanical energy transductions in standing wave ultrasonic motors. A piezoelectric translator prototype previously developed is tested with regard to both out-of-plane and tangential mechanical behaviours. Influences of the vibration amplitude, the normal pre-load and the dynamic friction coefficient at the stator/frame interface are pointed out through the acquisition of speed-driving force characteristics. In the main part of the article, theoretical approaches assuming the decoupling of the out-of-plane and tangential behaviours are proposed: the `complete' model takes into account transient phenomena and tangential inertia effects, and the `simplified' model supposes that the steady state is achieved. In both models, equivalent mass-spring systems allow the intermittent stator/frame contact to be characterized with regard to the vibration amplitude and the normal pre-load. Successive contact and flight periods are clearly shown. During contact periods, the sequences of stick-slip phases are at the origin of the driving mechanism. They are theoretically discriminated through the study of their behaviour equations. Finally, experimental and theoretical data fitting proves the validation of analytical analyses and allows the future optimization of standing wave ultrasonic motors to be envisaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.