Abstract

In this paper, dense B4C-WB2 composites were fabricated at 1950 °C using B4C and WB2 as raw materials via a hot press method. The phase composition, microstructures and mechanical properties of the B4C-WB2 composites with different B4C volume fraction were studied. The obtained 68.7 vol%B4C-WB2 composites demonstrated good comprehensive properties with high flexural strength of 696 MPa, superior hardness of 34.8 GPa, and acceptable fracture toughness of 3.3 MPa m1/2. The high flexural strength mainly resulted from the pinning effect of preferentially oriented strip-shape WB2 grains and clean grain interfaces between B4C and WB2 phases. The toughening mechanism of the B4C-WB2 composites was associated with the interfacial residual stress induced by the mismatch of thermal expansion coefficient. In addition, the B4C-WB2 composites demonstrated good electrical conductivity (3.3 × 105 S/m) with a low density of 5.589 g/cm3, making them of potential interest for cutting tools and armor protection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.