Abstract

This study synthesized collagen-chitosan/PVA nanofiber composites using the electrospinning method. Characterizations included Fourier transform infrared spectroscopy (FTIR) and surface morphology using scanning electron microscopy (SEM). Investigations were carried out on tensile strength, degradation rate, and antibacterial test. It was found that the functional groups C–H, –OH, C–O, C–N, and N–H were suitable for PVA, collagen, and chitosan materials. The SEM showed that increasing the PVA composition caused a change in fiber diameter ranging from 34.64 to 71.63 nm. The tensile strength results show that the smallest nanofiber diameter has the highest ultimate strength value of 5.6 ± 0.4 MPa. In addition, it was found that the rate of degradation was directly proportional to the increase in concentration. Antibacterial activity test was carried out using two types of bacteria, namely gram-positive bacteria S. aureus and gram-negative bacteria E. coli. The results showed that the collagen-chitosan/PVA nanofiber composite had a diameter of antibacterial inhibition for E. coli and S. aureus bacteria, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.