Abstract

Halfway through embryonic development, the epidermis of Drosophila exhibits a gap at the dorsal side covered by an extraembryonic epithelium, the amnioserosa (AS). Dorsal closure (DC) is the process whereby interactions between the two epithelia establish epidermal continuity. Although genetic and biomechanical analysis have identified the AS as a force-generating tissue, we do not know how individual cell behaviours are transformed into tissue movements. To approach this question we have applied a novel image-analysis method to measure strain rates in local domains of cells and performed a kinematic analysis of DC. Our study reveals spatial and temporal differences in the rate of apical constriction of AS cells. We find a slow phase of DC, during which apical contraction of cells at the posterior end predominates, and a subsequent fast phase, during which all the cells engage in the contraction, which correlates with the zippering process. There is a radial gradient of AS apical contraction, with marginal cells contracting earlier than more centrally located cells. We have applied this analysis to the study of mutant situations and associated a particular genotype with quantitative and reproducible changes in the rate of cell contraction and hence in the overall rate of the process. Our mutant analysis reveals the contribution of mechanical elements to the rate and pattern of DC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.