Abstract

This study compared the effect of using milled fiber-reinforced resin composite and Co–Cr (milled wax and lost-wax technique) frameworks for 4-unit implant-supported partial fixed dental prostheses; and also, evaluated the influence of the connector's cross-sectional geometries on the mechanical behavior. Three groups of milled fiber-reinforced resin composite (TRINIA) for 4-unit implant-supported frameworks (n = 10) with three connectors geometries (round, square, or trapezoid), and three groups of Co–Cr alloy frameworks manufactured by milled wax/lost wax and casting technique, were analyzed. The marginal adaptation was measured before cementation using an optical microscope. Then, the samples were cemented, thermomechanical cycled (load of 100 N/2 Hz, 106 cycles; 5, 37, and 55 ᵒC, a total of 926 cycles at each one), and cementation and flexure strength (maximum force) analyzed. Analysis of stress distribution in framework veneered considering resin and ceramic properties for fiber-reinforced and Co–Cr frameworks, respectively, implant, and bone was by finite element analysis under three contact points (100 N) on the central region. ANOVA and Multiple paired test-t with Bonferroni adjustment (α = 0.05) were used for data analysis. Fiber-reinforced frameworks showed better vertical adaptation (mean ranged from 26.24 to 81.48 μm) compared to the Co–Cr frameworks (mean ranged from 64.11 to 98.12 μm), contrary to horizontal adaptation (respectively, means ranged from 281.94 to 305.38 μm; and from 150.70 to 174.82 μm). There were no failures during the thermomechanical test. Cementation strength showed three times higher for Co–Cr compared to fiber-reinforced framework, as well as flexural strength (P < .001). Regarding stress distribution, fiber-reinforced had a pattern of concentration in the implant-abutment complex. There were no significant differences in stress values or changes observed among the different connector geometries or framework materials. Trapezoid connector geometry had a worse performance for marginal adaptation, cementation (fiber-reinforced 132.41 N; Co–Cr 255.68 N) and flexural strength (fiber-reinforced 222.57 N; Co–Cr 614.27 N). Although the fiber-reinforced framework showed lower cementation and flexural strength, considering the stress distribution values and absence of failures in the thermomechanical cycling test, it can be considered for use as a framework for 4-unit implant-supported partial fixed dental prostheses in the posterior mandible. Besides, results suggest that trapezoid connectors mechanical behavior did not perform well compared to round or square geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.