Abstract

ObjectiveTo assess the effect of a ferrule design with specific post material-shape combinations on the mechanical behavior of post-restored canine teeth. MethodsMicro-CT scan images of an intact canine were used to create a 3-D tessellated CAD model, from which the shapes of dentin, pulp and enamel were obtained and geometric models of post-endodontically restored teeth were created. Two types of 15mm post were evaluated: a quartz fiber post with conical–tapered shape, and a carbon (C) fiber post with conical–cylindrical shape. The abutment was created around the coronal portion of the posts and 0.1mm cement was added between prepared crown and abutment. Cement was also added between the post and root canal and a 0.25mm periodontal ligament was modeled around the root. Four models were analysed by Finite Element (FE) Analysis: with/without a ferrule for both types of post material and shape. A load of 50N was applied at 45° to the longitudinal axis of the tooth, acting on the palatal surface of the crown. The maximum normal stress criterion was adopted as a measure of potential damage. ResultsModels without a ferrule showed greater stresses (16.3MPa) than those for models with a ferrule (9.2MPa). With a ferrule, stress was uniformly distributed along the abutment and the root, with no critical stress concentration. In all models, the highest stresses were in the palatal wall of the root. Models with the C-fiber post had higher stress than models with the quartz fiber posts. The most uniform stress distribution was with the combination of ferrule and quartz fiber post. SignificanceThe FE analysis confirmed a beneficial ferrule effect with the combination of ferrule and quartz fiber post, with tapered shape, affording no critical stress concentrations within the restored system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.