Abstract

This article examines the mechanical behavior of Basalt fiber-reinforced epoxy (BFRE) and a new type of fiber metal laminates (FMLs) composed of steel, aluminum, and BFRE named as Basalt fiber metal laminate (BFML) under tensile and bending loads. To study the effect of fillers in epoxy, the micro glass powder (MGP) was only added into the epoxy resin in BFRE composites at various volume fractions. It was found that the MGP had no significant effect on tensile strength, but it raised the stiffness and decreased the failure strain of BFRE. On the other hand, bending strength increased by adding MGP. BFML showed superiority in energy absorption via tensile strength. This FML had flexibility much higher than that of BFRE. Adding MGP or metal layer to basalt-reinforced composites improved the mechanical properties in tensile and bending loads. Selective bending specimens of BFRE are studied by SEM to show the positive role of MGP in raising the bending strength and further analysis of the nature of fracture surfaces. High fragmentation of matrix was obvious.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.