Abstract

The mechanical performance and electrochemical stability in simulated body fluid (SBF) of a lightweight Fe-30Mn-10Al-1C (in wt.%) alloy after gas nitridation were investigated. The gas nitriding process was performed at 550 °C for 5 h under pure NH3 atmosphere. The nitrided layer was ∼45 μm-thick and consisted predominantly of fine AlN. The surface microhardness, ultimate tensile strength, yield strength, and elongation of the present gas-nitrided alloy are 1814 Hv, 1078 MPa, 1024 MPa, and 77%, respectively. The corrosion tests in SBF showed that the gas-nitrided alloy exhibited a corrosion current density (Icorr) of 5.0 × 10−9 A/cm2, a pitting corrosion current density (Ipit) of 5.1 × 10−7 A/cm2, and a passivation region with ΔE (≡Ep − Ecorr) ≈ +1804 mV, respectively, which are substantially better than those obtained in the plasma-nitrided and hydroxyapatite-coated 316L stainless steel. The results demonstrated that the present gas-nitrided alloy having an excellent combination of strength, ductility and corrosion resistance is a promising candidate to replace 316L stainless steel for medical implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.