Abstract

Cubic boron nitride is becoming an alternative cutting tool material for machining under demanding conditions, displaying superior wear performance and machined parts with higher quality. The current need to reduce the cobalt content in these tools led to this study and focused on alternative binder materials for cubic boron nitride cutting tools. This work addresses several nickel–cobalt-based materials, regarding their microstructure, mechanical (hardness and shear strength), and tribological performance. The best results were attained when adding tungsten carbide to nickel–cobalt, once nickel–cobalt–tungsten carbide was found to display the higher mechanical properties, together with the higher wear resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.