Abstract
The properties of infrared (IR) transparent chalcogenide glass Se 57I 20As 18Te 3Sb 2 have been studied for the first time by dynamic mechanical analysis (DMA). This glass demonstrates both high transparency in a broad IR band (1–12 μm) and a particularly low softening point (near 50 °C). It is known as one of the best adhesives intended for the binding of IR optics elements. The DMA method gives valuable information about the complex Young’s modulus of the glass in its softening region. In parallel with the study of mechanical properties of the glass the character of its glass transition process has been investigated. Our results of DMA were then compared with our thermodynamic data obtained by scanning calorimetry. The peak of mechanical losses in DMA appears to be situated considerably higher than the calorimetrically determined glass transition temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.