Abstract
Using a top-down approach, we report a theoretical investigation of the melting temperature at the nanoscale, Tm, for different shapes of “free-standing” nanostructures. To easily calculate the nanoscale melting temperature for a wide range of metals and semiconductors, a convenient shape parameter called αshape is defined. Considering this parameter, we argue why smaller size effects are observed in high bulk melting temperature materials. Using Tm, a phase transition stress model is proposed to evaluate the intrinsic strain and stress during the first steps of solidification. Then, the size effect on the Thornton & Hoffman's criterion at the nanoscale is discussed and the intrinsic residual stress determination in nanostructures is found to be essential for sizes below 100 nm. Furthermore, the inverse Hall-Petch effect, for sizes below ∼15 nm, can be understood by this model. Finally, the residual strain in hexagonal zinc oxide nanowires is calculated as a function of the wire dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.