Abstract

AbstractThis paper presents the mechanical and thermal properties of unidirectional, degradable, environment‐friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate‐co‐valerate) (PHBV) resin. Tensile and flexural properties of the “green” composites with different fiber contents were measured in both longitudinal and transverse directions. Compared to those of virgin resin, the tensile and flexural strengths of “green” composites are significantly higher in the longitudinal direction while they are lower in the transverse direction. However, the mechanical properties are lower than those predicted by simple models. Scanning electron microscope (SEM) photomicrographs of the tensile fracture surfaces demonstrate fibers being pulled out from the matrix, the interfacial failure, fiber fibrillation, and the nonunidirectional nature of the “green” composites. The thermal behavior of the “green” composites, studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), showed that the presence of pineapple fibers does not affect the nonisothermal crystallization kinetics, crystallinity, and thermal decomposition of PHBV resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.