Abstract

There is a growing need for diversified material feedstock for 3D printing technologies such as fused deposition modelling (FDM) techniques. This has resulted in an increased drive in the research and development of eco-friendly biopolymer-based composites with wide applications. At present, bionanocomposites of polylactic acid (PLA), biopolymer, and cellulose nanocrystals (CNCs) offer promising technical qualities suitable for FDM 3D printing applications due to their biodegradability and wide-ranging applications. In this work, the applicability of the PLA/CNCs bionanocomposites in 4D applications was investigated by studying its shape-recovery behaviour. Tensile and dynamic mechanical analysis (DMA) was used to elucidate the mechanical and flexural properties of the 3D-printed specimens. The results revealed improvement in the deflection temperature under load (DTUL), creep deformation, and recovery of the PLA/CNCs bionanocomposites. Tensile and static 3-point bending analyses of the bionanocomposites revealed improved tensile strength and modulus of the 3D printed parts. The potential 4D application of the PLA/CNCs bionanocomposites was also investigated by successfully printing PLA/CNC bionanocomposites directly onto a nylon fabric. The PLA/CNCs-fabric prototype included a foldable cube and grid-patterned designs. Additionally, the heat-induced shape memory behaviour of these prototypes was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.