Abstract

Through molecular dynamics (MD) simulation, the structure and mechanical properties of matrix-free polymer nanocomposites (PNCs) constructed via polymer-grafted graphene nanosheets are studied. The dispersion of graphene sheets is characterized by the radial distribution function (RDF) between graphene sheets. We observe that a longer polymer chain length Lg leads to a relatively better dispersion state attributed to the formation of a better brick-mud structure, effectively screening the van der Waals interactions between sheets. By tuning the interaction strength εend-end between end functional groups of grafted chains, we construct physical networks with various robustness characterized by the formation of the fractal clusters at high εend-end values. The effects of εend-end and Lg on the mechanical properties are examined, and the enhancement of the stress-strain behavior is observed with the increase of εend-end and Lg. Structural evolution during deformation is quantified by calculating the orientation of the graphene sheets and their distribution, the stress decomposition, and the size of the clusters formed between end groups and their distribution. Then, we briefly study the effects of time and temperature on the self-healing behavior of these unique PNCs in the rubbery state. Lastly, the self-healing kinetics is quantitatively analyzed. In general, this work can provide some rational guidelines to design and fabricate matrix-free PNCs with both excellent mechanical and self-healing properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.