Abstract

The first-principles calculations are employed to provide a fundamental understanding of the structural features and relative thermodynamical, mechanical and phonon stability of TiAsTe compound. The calculated lattice parameters are in good agreement with available experimental results. We have computed elastic constants, its derived moduli and ratios that characterize mechanical properties for the first time. The calculated elastic constants indicate that these materials are mechanically stable at ambient condition. The minimum thermal conductivities of TiAsTe are calculated using both Clarke’s model and Cahill’s model. Furthermore, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Young’s modulus and shear modulus. Our results suggest strong elastic anisotropy for this compound. Additionally, the phonon spectra and phonon density of states are also obtained and discussed. The full phonon dispersion calculations confirm the dynamic stability of TiAsTe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.