Abstract

The present study aimed at assessing mechanical and durability characteristics of ground granulated blast furnace slag (GGBS)-based geopolymer composites at 5%, 10%, 15%, 20%, 25%, and 30% replacement proportion of silica fume at 12 molarity of NaOH. Mechanical properties were assessed using compression and tension tests, whereas durability characteristics were evaluated using ultrasonic pulse velocity test (UPV), acid test, and rapid chloride permeability test (RCPT), and water absorption (WA) test. Additionally, reduction in mass and strength were also determined due to the acid action on the developed composites. A correlation of compressive strength was also established with the splitting tensile strength, UPV, RCPT, and WA. The presence of silica fume and high NaOH concentration in GPC tends to improve the mechanical strength up toa certain level. UPV values obtained were falling in the range of medium to good category. Chloride ion penetration and water absorption values were reduced by around 23% and 26%, respectively, at 10% silica fume replacement. Mass loss and strength loss were reduced as the % of silica fume increased. A good correlation of compressive strength was obtained with tensile strength, UPV, and RCPT with a coefficient of determination of 0.9681, 0.9665, and 0.9208, respectively. Poor correlation was obtained between compressive strength and water absorption.

Highlights

  • IntroductionManufacturing of cement causes the generation of around 7–8% of the total worldwide carbon dioxide emissions, including emissions because of the burning of fuels and formation of Calcium oxide (CaO) from

  • ground granulated blast furnace slag (GGBS) was replaced with silica fumes at

  • The mechanical strength of geopolymer composite increased with an increase in percentage silica fumeup to 10% content in geopolymer mix

Read more

Summary

Introduction

Manufacturing of cement causes the generation of around 7–8% of the total worldwide carbon dioxide emissions, including emissions because of the burning of fuels and formation of CaO from

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.