Abstract

In this work, ultrasonic surface rolling process (USRP) was utilized to produce a gradient structured layer on 7B50-T7751 aluminum alloy, and the mechanical properties and corrosion fatigue behavior of treated samples were studied. These results reveal that underwent USRP, a 425 μm thick gradient structure and a 700 μm deep compressive residual stress field are created, aluminum grain size become fine(∼ 67 nm), and the corrosion rate of treated surface reduces by 60.08% owing to the combined effect of compressive residual stress and surface nanocrystallization. The corrosion fatigue strength is enhanced to 117% of that of 7B50 Al alloys by means of USRP due to the introduced compressive residual stress, which is considered as the major favorable factor in suppressing the initiation and early propagation of corrosion fatigue cracks. Besides, the gradient structure is an important factor in providing a significant synergistic contribution to the improvement of corrosion fatigue performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.