Abstract

Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.