Abstract
Ruminants are a source of enteric CH4, which has been identified as an anthropogenic greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric CH4 emissions, systems are currently being developed to measure CH4 emissions by cattle. An issue with grazing cattle is the ability to measure CH4 emissions in open-air environments. A scientific instrument for this task is an automated, open-circuit gas quantification system (GQS; C-Lock, Inc., Rapid City, SD). The GQS is a head chamber that grazing cattle occasionally visit (3 to 8 min/visit; 3 to 6 visits/d), and while the animal consumes a small portion of bait (0.5 to 1.0 kg/visit), the GQS captures the animal's breath cloud by exhausting air through the GQS. The breath cloud is then analyzed for CH4, CO2, and O2 concentrations. Data are hourly uploaded to a server where it is processed using algorithms to determine total daily fluxes. Several factors affect emission estimates generated by the GQS including the animal's visitation rate, length of sampling period, and airflow through the system. The location of the GQS is an important factor in determining the cattle's willingness to visit. Further, cattle need to be trained to use the GQS, which normally requires 4 to 8 wk. Several researchers have shown that 30 or more visits are required to obtain high-quality estimates of gas fluxes. Once cattle are trained to use the GQS, the bait delivery rate has little effect on the animal's willingness to use the system. Airflow through the GQS is an important factor, but as long as airflow is maintained above 26 L/s the breath-cloud capture seems nearly complete. There is great concern regarding circadian variation in the instantaneous production rates of CH4 because the GQS normally only spot-samples 2 to 4 times/d. Preliminary analysis has shown that variation in the instantaneous production rates of CH4 do not vary as greatly with grazing cattle compared with meal-fed cattle. It seems that increasing the visitation length decreases variation in estimated emissions, but there is a diminishing return to increasing visitation length. The GQS is a useful tool for researching the nutrition and emissions of grazing cattle, but great care must be taken to obtain the best quality data possible for use in this high-impact research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.