Abstract
Acidification of intracellular vesicles, such as endosomes and lysosomes, is a key pathway for regulating the function of internal proteins. Most conventional methods of measuring pH are not satisfactory for quantifying the pH inside these vesicles. Here, we investigated the molecular requirements for a fluorescence probe to measure the intravesicular acidic pH in living cells by means of fluorescence lifetime imaging microscopy (FLIM). The developed probe, m-DiMeNAF488, exhibits a pH-dependent equilibrium between highly fluorescent and moderately fluorescent forms, which has distinct and detectable fluorescence lifetimes of 4.36 and 0.58 ns, respectively. The pKa(τ) value of m-DiMeNAF488 was determined to be 4.58, which would be favorable for evaluating the pH in the acidic vesicles. We were able to monitor the pH changes in phagosomes during phagocytosis by means of FLIM using m-DiMeNAF488. This probe is expected to be a useful tool for investigating acidic pH-regulated biological phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.