Abstract

Under the assumption that astrophysical black hole candidates are the Kerr black holes of general relativity, the continuum-fitting method and the analysis of the Kα iron line are today the only available techniques capable of providing a relatively reliable estimate of the spin parameter of these objects. If we relax the Kerr black hole hypothesis and we try to test the nature of black hole candidates, we find that there is a strong correlation between the measurement of the spin and possible deviations from the Kerr solution. The properties of the radiation emitted in a Kerr spacetime with spin parameter a* are indeed very similar, and practically indistinguishable, from the ones of the radiation emitted around a non-Kerr object with different spin. In this paper, I address the question whether measuring the Kerr spin with both the continuum-fitting method and the Kα iron line analysis of the same object can be used to claim the Kerr nature of the black hole candidate in the case of consistent results. In this work, I consider two non-Kerr metrics and it seems that the answer does depend on the specific background. The two techniques may either provide a very similar result (the case of the Bardeen metric) or show a discrepancy (Johannsen-Psaltis background).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.