Abstract
Extreme temperatures and pressures are produced through acoustic cavitation: the formation, growth and collapse of bubbles in a liquid irradiated with high intensity ultrasound. Single bubbles have generally been assumed to give higher temperature conditions than bubble clouds, but confirmation from the single buble sonoluminescence (SBSL) emission spectra have been problematic because SBSL typically produces featureless emission spectra that reveal little about the intra-cavity physical conditions or chemical processes. Here we present definitive evidence of the existence of a hot, highly energetic plasma core during SBSL. From a luminescing bubble in sulfuric acid, excited state to excited state emission lines are observed both from noble gas ions (Ar+, Kr+, and Xe+) and from neutral atoms (Ne, Ar, Kr, and Xe). The excited states responsible for these emission lines range from 8.3 eV (for Xe) to 37.1 eV (for Ar+) above the ground state. Observation of emission lines allows for identification of intra-cavity species responsible for light emission; the energy levels of the emitters indicate the plasma generated during cavitation is comprised of highly energetic atomic and ionic species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.