Abstract

The coefficient of restitution is a cornerstone empirical parameter of any model where energy is dissipated by particle collisions. However, completely determining this parameter experimentally is challenging, as upon collision, a particle’s material properties (such as roughness, sphericity and shape) or minor imperfections, can cause energy to be shifted to other translational or rotational components. When all degrees of freedom are not resolved, these shifts in energy can easily be mistaken for dissipated energy, affecting the derivation of the coefficient of restitution. In the past, these challenges have been highlighted by a large scatter in values of experimental data for the restitution coefficient. In the present study, a novel experimental procedure is presented, determining all six degrees of freedom of a single, spherical, nylon particle, dropped on a glass plate. This study highlights that only by using all six degrees of freedom, can a single reliable and consistent coefficient of restitution be obtained for all cases and between subsequent collisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.