Abstract

Estimating the degree of synchrony or reliability between two or more spike trains is a frequent task in both experimental and computational neuroscience. In recent years, many different methods have been proposed that typically compare the timing of spikes on a certain time scale to be fixed beforehand. In this study [1], we propose the ISI-distance, a simple complementary approach that extracts information from the interspike intervals by evaluating the ratio of the instantaneous frequencies. The method is parameter free, time scale independent and easy to visualize as illustrated by an application to real neuronal spike trains obtained in vitro from rat slices (cf. [2]). We compare the method with six existing approaches (two spike train metrics [3,4], a correlation measure [2,5], a similarity measure [6], and event synchronization [7]) using spike trains extracted from a simulated Hindemarsh-Rose network [8]. In this comparison the ISI-distance performs as well as the best time-scale-optimized measure based on spike timing, without requiring an externally determined time scale for interaction or comparison.

Highlights

  • Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf

  • Many different methods have been proposed that typically compare the timing of spikes on a certain time scale to be fixed beforehand

  • The method is parameter free, time scale independent and easy to visualize as illustrated by an application to real neuronal spike trains obtained in vitro from rat slices

Read more

Summary

Introduction

Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf . Address: 1Istituto dei Sistemi Complessi – CNR, Sesto Fiorentino, Italy, 2Institute for Nonlinear Sciences, University of California, San Diego, CA, USA, 3Istituto Nazionale di Ottica Applicata, Firenze, Italy and 4Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography), University of California, San Diego, CA, USA

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.