Abstract
A measure of risk is introduced for a sequence of random incomes adapted to some filtration. This measure is formulated as the optimal net present value of a stream of adaptively planned commitments for consumption. The new measure is calculated by solving a stochastic dynamic linear optimization problem which, for finite filtrations, reduces to a deterministic linear programming problem. We analyze properties of the new measure by exploiting the convexity and duality structure of the stochastic dynamic linear problem. The measure depends on the full distribution of the income process (not only on its marginal distributions) as well as on the filtration, which is interpreted as the available information about the future. The features of the new approach are illustrated by a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.