Abstract
ObjectiveWe evaluated the resistance to externally induced wrist extension in chronic stroke patients. We aimed to objectively measure and distinguish passive (muscle and soft tissue stiffness) and active (spasticity and spastic dystonia) components of the resistance. MethodsWe used a hand-held dynamometer, which measures torque, joint movement and electromyography (EMG) simultaneously, to assess the resistance to externally induced wrist extension. Slow and fast stretches were applied to the affected and unaffected wrists in 57 chronic stroke patients (57 ± 11 years). We extracted from the data parameters that represent passive and muscle activity components and assessed the validity, test–retest reliability and the clinical utility of the measurement. ResultsThe analysis showed (1) a significant difference in the passive and muscle activity components between the affected and unaffected sides; (2) a significant correlation between passive and muscle activity components and the modified Ashworth scale (MAS); (3) a significant difference between the subgroups of patients stratified by the MAS; (4) an excellent intra-rater reliability on each of the passive and muscle activity components with intra-class coefficients between 0.92 and 0.99; (5) and small measurement error. ConclusionsUsing a hand-held dynamometer, we were able to objectively measure the resistance to muscle stretch in the wrist joint in chronic stroke patients and discriminate muscle overactivity components from muscle and soft tissue stiffness. We demonstrated validity, test–retest reliability and the clinical utility of the measurement. SignificanceQuantification of the different components of resistance to externally induced movement enables the objective evaluation of neurorehabilitation effects in chronic stroke patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.