Abstract

Populations of bacterial cells that grow under the same conditions and/or environments are often considered to be uniform and thus can be described by ensemble average values of their physiologic, phenotypic, genotypic or other parameters. However, recent evidence suggests that cell-to-cell differences at the gene expression level could be an order of magnitude greater than previously thought even for isogenic bacterial populations. Such gene expression or transcriptional-level heterogeneity determines not only the fate of individual bacterial cells in a population but could also affect the ultimate fate of the population itself. Although techniques for single-cell gene expression measurement in eukaryotic cells have been successfully implemented for a decade or so, they have only recently become available for single bacterial cells. This is due to the difficulty of efficient lysis of most bacterial cells, as well as short half-life time (low stability) of bacterial mRNA. In this article, we review the recent progress and challenges associated with analyzing gene expression levels in single bacterial cells using various semi-quantitative and quantitative methods. In addition, a review of the recent progress in applying microfluidic devices to isolate single bacterial cells for gene expression analysis is also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.