Abstract

We propose to interpret distribution model risk as sensitivity of expected loss to changes in the risk factor distribution, and to measure the distribution model risk of a portfolio by the maximum expected loss over a set of plausible distributions defined in terms of some divergence from an estimated distribution. The divergence may be relative entropy or another f‐divergence or Bregman distance. We use the theory of minimizing convex integral functionals under moment constraints to give formulae for the calculation of distribution model risk and to explicitly determine the worst case distribution from the set of plausible distributions. We also evaluate related risk measures describing divergence preferences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.