Abstract

With the aim of determining the ion direction, Doppler spectroscopy is carried out in a Farnsworth fusor with a spherical cathode grid during star mode operation. The Doppler shift of Balmer-α radiation from excited deuterium atoms (D*) is analyzed to find the kinetic energy spectrum. Diverging D* is measured at a cathode voltage of −20 kV, with currents between 0.5 mA and 3.4 mA, and in the pressure regime of 1.6 Pa–2.6 Pa. D* is produced during a charge exchange reaction of fast deuterium ions with the background gas. The measured spectra can only be formed via diverging ions due to momentum conservation during this charge exchange reaction. Dominant blue shifts coming from measurement locations inside microchannels moving toward the observer and red shifted spectra coming from microchannels moving away from the observer prove this diverging ion motion. A kinetic energy distribution of D* over different longitudinal positions inside the microchannel is measured at a pressure of (1.7 ± 0.1) Pa. The results indicate an increase in D* velocity from the center of the cathode toward the cathode edge. This can be explained by a virtual anode, which accelerates ions created in the center of the cathode outward. These results disagree with the converging ion model but could be explained by the hollow cathode model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.