Abstract
We describe a set of measures to examine the behavior of the Genetic Algorithm (GA) in dynamic environments. We describe how to use both average and best measures to look at performance, satisficability, robustness, and diversity. We use these measures to examine GA behavior with a recently devised dynamic test suite, the Shaky Ladder Hyperplane-Defined Functions (sl-hdf's). This test suite can generate random problems with similar levels of difficulty and provides a platform allowing systematic controlled observations of the GA in dynamic environments. We examine the results of these measures in two different versions of the sl-hdf's, one static and one regularly-changing. We provide explanations for the observations in these two different environments, and give suggestions as to future work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.