Abstract

Simultaneous measurements of oxygenated volatile organic compounds (OVOCs) by four independent research groups at the Youth Incorporated (YI) site during the 1995 Southern Oxidants Study Nashville Intensive, between July 4 and 30, 1995, provided a unique opportunity to compare results from different techniques. 2,4‐Dinitrophenylhydrazine (DNPH) coated C18 (C18AtmAA) and Si‐Gel (Si‐GelMTE) cartridges were compared with each other and with two sorbent‐based preconcentration gas chromatographic (GC) techniques coupled with mass spectrometric (MS) detection (GC/MSUM and GC/MSPU) or flame ionization detection GC/FIDUM· The experiment consisted of both a laboratory (part A) and an ambient air comparison (part B). In part A of the study, standard mixtures of OVOCs were diluted in a flowing gas stream of humidified, purified air, both with and without addition of O3, and distributed to participant's instrumentation. Concentrations were compared with the expected values based on known cylinder concentrations and dilution factors. In part B of the study, the instruments sampled ambient air from a common glass manifold. Species intercompared were formaldehyde, acetaldehyde, acetone, and propanal. The C18AtmAA data were typically higher than the Si‐GelMTE data for the four intercompared compounds, and possible explanations are given. Agreement between the cartridge systems and the GC/MS, GC/FID systems for comeasured compounds was poorer than expected but improved towards the end of the experiment. The GC/MS systems tracked each other well for acetone, but there were differences in the absolute concentration values. These results show that improvements in the accuracy and comparability of techniques should be of high priority.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.