Abstract

The doubly labeled water (DLW) method is commonly used to measure energy expenditure in free-living wildlife and humans. However, DLW studies involving animals typically require three blood samples, which can affect behavior and well-being. Moreover, measurement of H (δ(2)H) and O (δ(18)O) isotope concentrations in H2O derived from blood using conventional isotope ratio mass spectrometry is technically demanding, time-consuming, and often expensive. A novel technique that would avoid these constraints is the real-time measurement of δ(2)H and δ(18)O in the H2O vapor of exhaled breath using cavity ring-down (CRD) spectrometry, provided that δ(2)H and δ(18)O from body H2O and breath were well correlated. Here, we conducted a validation study with CRD spectrometry involving five zebra finches (Taeniopygia guttata), five brown-headed cowbirds (Molothrus ater), and five European starlings (Sturnus vulgaris), where we compared δ(2)H, δ(18)O, and rCO2 (rate of CO2 production) estimates from breath with those from blood. Isotope concentrations from blood were validated by comparing dilution-space estimates with measurements of total body water (TBW) obtained from quantitative magnetic resonance. Isotope dilution-space estimates from δ(2)H and δ(18)O values in the blood were similar to and strongly correlated with TBW measurements (R(2) = 0.99). The (2)H and (18)O (ppm) in breath and blood were also highly correlated (R(2) = 0.99 and 0.98, respectively); however, isotope concentrations in breath were always less enriched than those in blood and slightly higher than expected, given assumed fractionation values between blood and breath. Overall, rCO2 measurements from breath were strongly correlated with those from the blood (R(2) = 0.90). We suggest that this technique will find wide application in studies of animal and human energetics in the field and laboratory. We also provide suggestions for ways this technique could be further improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.