Abstract
We show how atomic force microscopy techniques based on contact resonance (CR) can be used to measure the viscoelastic loss tangent tan δ of polymeric materials. The method does not require intermediate calculation of loss and storage moduli, calibration measurements, or use of the conventional CR tip shape parameter. We present the method’s physical concepts and sensitivity calculations for typical experimental parameters. In addition, CR experiments were performed on four homogeneous polymer samples (polystyrene, high-density polyethylene, and two commercial photostress polymers) with tan δ in the range from approximately 0.02 to 0.2. Results compare favorably to those obtained by microscale dynamic nanoindentation and macroscale dynamic mechanical analysis. These results show the potential of CR modes for nanoscale viscoelastic measurements of polymers and biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.